General Engineering (GNEG)

Courses

GNEG 1011 Engineering Professional Concepts: 1 semester hour.
Professional orientation and synthesis. Introduction to engineering practices and methods of analysis. Written and oral presentations and discussions by students, faculty, and visiting professionals on topics of timely interest relative to the engineering professional and professional development.

GNEG 1021 Engineering Prof Concpt II: 1 semester hour.
Professional orientation and synthesis. Introduction to engineering practices and methods of analysis. Written and oral presentations and discussions by students, faculty, and visiting professionals on topics of timely interest relative to the engineering professional and professional development.

GNEG 1111 Engineering Applications Lab I for Mathematics: 1 semester hour.
Practical applications of Algebra and Trigonometry for problems in engineering, computer science, and technology. Algebra and Trigonometry concepts will be reinforced through hands-on, physical application in the laboratory.
Co-requisite: MATH 1115 (http://catalog.pvamu.edu/search/?P=MATH%201115).
Co-requisite: MATH 1115 (http://catalog.pvamu.edu/search/?P=MATH%201115).

GNEG 1121 Engineering Lab II for Mathematics: 1 semester hour.
Practical applications of the 1st level Calculus for problems in engineering, computer science, and technology. The 1st level Calculus concepts will be reinforced through hands-on, physical application in the laboratory.
Co-requisite: MATH 1124 (http://catalog.pvamu.edu/search/?P=MATH%201124).
Co-requisite: MATH 1124 (http://catalog.pvamu.edu/search/?P=MATH%201124).

GNEG 2021 Engr Lab III for Math: 1 semester hour.
Practical applications of the 2nd level Calculus for problems in engineering, computer science, and technology. The 2nd level Calculus concepts will be reinforced through hands-on, physical application in the laboratory.
Co-requisite: MATH 2024 (http://catalog.pvamu.edu/search/?P=MATH%202024).

GNEG 2151 Engineering Research I: 1 semester hour.
Research methodology course, the content of which includes an introduction to scientific method, formulation of research question, development and implementation of research plan, analysis and evaluation of results, and reporting of findings.

GNEG 2156 Engineering Cooperative Education I: 6 semester hours.
A cooperative program of engineering with an approved engineering-based industry, engineering consulting firm, or governmental regulatory agency engaged in planning and administration of engineering functions. The student receives related engineering assignments in a real work situation. The assignment is commensurate with the theoretical engineering experience of the student.

GNEG 3051 Professional Engineering: 1 semester hour.
Fundamentals of engineering and related science subjects include biology, chemistry, computers, electric circuits, engineering economics, ethics, fluid mechanics, materials science, mathematics, statics, dynamics, mechanics of materials, and thermodynamics.
Prerequisites: MATH 2043 (http://catalog.pvamu.edu/search/?P=MATH%202043) and CHEG 2003 (http://catalog.pvamu.edu/search/?P=CHEG%202003) and (ELEG 1043 (http://catalog.pvamu.edu/search/?P=ELEG%201043) or COMP 1213 (http://catalog.pvamu.edu/search/?P=COMP%201213)) and (CVEG 2053 (http://catalog.pvamu.edu/search/?P=CVEG%202053) or CVEG 2454 (http://catalog.pvamu.edu/search/?P=CVEG%202454)) and (ELEG 2023 (http://catalog.pvamu.edu/search/?P=ELEG%202023) or ELEG 2053 (http://catalog.pvamu.edu/search/?P=ELEG%202053)) and (CHEG 2043 (http://catalog.pvamu.edu/search/?P=CHEG%202043) or MCEG 2013 (http://catalog.pvamu.edu/search/?P=MCEG%202013) and (CHEG 2013 (http://catalog.pvamu.edu/search/?P=CHEG%202013) or MCEG 2023 (http://catalog.pvamu.edu/search/?P=MCEG%202023) or ELEG 3033 (http://catalog.pvamu.edu/search/?P=ELEG%203033) or CHEG 3033 (http://catalog.pvamu.edu/search/?P=CHEG%203033))) and (CHEG 3023 (http://catalog.pvamu.edu/search/?P=CHEG%203023)) and (CVEG 3063 (http://catalog.pvamu.edu/search/?P=CVEG%203063) or ELEG 3063 (http://catalog.pvamu.edu/search/?P=ELEG%203063) or MCEG 3063 (http://catalog.pvamu.edu/search/?P=MCEG%203063)).

GNEG 3061 Introduction to Engineering Project Management: 1 semester hour.
Principles and techniques of managing engineering and software projects. Topics include project initiation, estimating, resource allocation, developing work plans, scheduling, progress tracking, design coordination, production coordination, quality management, managing teams and close out, and case study of real world projects.
Prerequisites: CHEG 2003 (http://catalog.pvamu.edu/search/?P=CHEG%202003).

GNEG 3151 Engineering Research II: 1 semester hour.
This is a course of research activities consisting of library, laboratory, or other research activities on selected problems. Results of the research are presented in formal, oral, and written presentations.
Prerequisites: GNEG 2151 (http://catalog.pvamu.edu/search/?P=GNEG%202151).

GNEG 3156 Engineering Cooperative Education II: 6 semester hours.
A cooperative program of engineering with an approved engineering-based industry, engineering consulting firm, or governmental regulatory agency engaged in planning and administration of engineering functions. The student receives related engineering assignments in a real work situation. The assignment is commensurate with the theoretical engineering experience of the student.
GNEG 4151 Engineering Research III: 1 semester hour.
A continuation of GNEG 3151; in-depth research on selected problems. Results of the research are presented in formal, oral, and written presentations.
Prerequisites: GNEG 3151.

GNEG 5010 Research Seminar: 0 semester hours.
Current research/project in a wide range of fields presented by guest lecturers, faculty or students. Discussion period at the end of each presentation will permit the students to learn more about research methods and presentation techniques.

GNEG 5021 Research Seminar: 1 semester hour.
Current research/project in a wide range of fields presented by guest lecturers, faculty, or students. Discussion period at the end of each presentation will permit the students to learn more about research methods and presentation techniques.

GNEG 5023 Operations Research: 3 semester hours.
An introduction to quantitative modeling and optimization; linear and dynamic programming; queueing theory; inventory modeling; critical path systems; network flow modeling and technological forecasting.

GNEG 5033 Engineering Probability and Statistics: 3 semester hours.
Theory of permutations, combinations; statistical principles of analysis of random data probability as a basis of engineering design.

GNEG 5053 Engineering Analysis I: 3 semester hours.
Introduction to multi-variable calculus. Application of mathematical techniques to various engineering disciplines using linear partial differential equations-boundary value and initial value problems; Linear Optimization techniques.

GNEG 5073 Engineering Analysis II: 3 semester hours.
Complex variable theory using techniques such as conformal mapping, optimization and boundary value analysis, in engineering applications such as control systems and signal processing. Introduction to fractals (fractional dimensions) and their applications in geography and animation will be discussed.
Prerequisites: GNEG 5063.

GNEG 5086 Thesis: 6 semester hours.
A candidate for the Master of Science in Engineering is required to perform a study, design or investigation, under the direction of a faculty advisory committee. A written thesis is required to be presented, defended orally and submitted to the faculty advisory committee for approval.

GNEG 5133 Engineering Numerical Methods: 3 semester hours.
Numerical methods in engineering include fundamental numerical techniques involving recursion relationships, numerical quadratures, etc., applied to engineering problems. Emphasis will be placed on the solution of advanced engineering problems involving ordinary and partial differential equations. Proven and efficient finite methods will be covered with emphasis on engineering conceptualization and formulation. An introduction to finite elements analysis.

GNEG 5193 Special Topics: 3 semester hours.
Special topics in engineering relating to materials, renewable and non-renewable resources, environmental and energy fields are selected and discussed in detail. Considers all aspects of planning, design fabrication, development and implementation.

GNEG 5203 Graduate Internship: 3 semester hours.
A realistic experience in engineering to enhance the student's professional abilities. Students work on significant projects with industry firms or governmental agencies involving decision-making responsibility. Course requires oral and written report.

GNEG 5303 Graduate Project: 3 semester hours.
A study, design, or investigation, under the direction of a graduate faculty advisor. An oral presentation and a written report are required. Prerequisite: candidacy for the Non-Thesis-Option of the Master of Science in Engineering degree.

GNEG 5891 Research: 1 semester hour.
Methods and practice in research.

GNEG 5893 Research: 3 semester hours.
Methods and practice in research.

GNEG 5896 Research: 6 semester hours.
Methods and practice in research.

GNEG 5993 Independent Study: 3 semester hours.
Readings, research and/or field work on selected topics.